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ABSTRACT

A theoretical analysis of the behavior of a typical pulse tube regenerator has been
carried out.  Assuming simple sinusoidal oscillations, the static and oscillatory pressures,
velocities and temperatures have been determined for a model that includes a compressible
gas and imperfect thermal contact between the gas and the regenerator matrix.  For realistic
material parameters, the analysis reveals that the pressure and velocity oscillations are
largely independent of details of the thermal contact between the gas and the solid matrix.
Only the temperature oscillations depend on this contact.  Suggestions for optimizing the
design of a regenerator are given.

CONSERVATION EQUATIONS

The conservation equations for an element of gas undergoing three-dimensional flow
and exchanging heat with its surroundings, ignoring gravitational forces, can be written as
follows1 (we adopt the notation that variables with an asterisk are the normal unscaled
variables; later we will introduce scaled, dimensionless variables, which will not have an
asterisk):

    Mass conservation: ∂r*
∂t* = – — ⋅ r* v* (1)

Momentum conservation: ∂r* v*
∂t* = – — ⋅ r* v* v* – — P* – — ⋅ t* (2)

Energy conservation:
∂

∂t* (r* U*) = – — ⋅r* U* v* – P* — ⋅ v* – — ⋅q* – t*: — v* (3)

where v* is the vector velocity, t* is the stress tensor, q* is heat flow, and U* is the
internal energy density.

In the case of one-dimensional flow in the z-direction, eqs. (1), (2) and (3) become
(using eq. (1') to arrive at the form of eqs. (2') and (3')), in cylindrical coordinates:
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    ∂r*
∂t* = – ∂(r* vz

*)
∂z* (1')
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where U* has been replaced by Cp T* – P*/r* and the — ⋅q* term has been split up into an
axial conduction term, ∂

∂z*(k ∂T*
∂z*), and a term, Q, for heat transfer from the matrix. In eqs.

(2') and (3') the stress tensor, t*, has been expressed in terms of its velocity gradient
components 1.

    The terms involving ∂vz
*/∂z* in eqs. (2') and (3') can be neglected and in

most regenerator calculations the term r* ∂vz*/∂t* in eq. (2') is also very small compared to
the pressure gradient and the viscous terms. In that case eq. (2') can be used to evaluate the
term, vz

* ∂vz
*/∂t*, in eq. (3') and one obtains2:

r* C p
∂ T*
∂t* – ∂P*

∂t* = – r* q*
f Cp

∂ T*
∂z* + k ∂2T*

∂z* 2 + Q (4)

where vz
* has been replaced by q*/f = u*av by averaging v z

* over the cross section of the
pore; q* is the effective velocity that the fluid would have with no matrix present and f is the
void fraction.

The ∂vz
*/∂r* terms in eq. (2') are generally replaced by a Darcy permeability

expression for a porous matrix. Then eq. (2') becomes:
r*
f

∂q*
∂t* = – ∂P*

∂z* – m q*
Kp

(5)

where Kp is the Darcy permeability.

To convert the variables to dimensionless form we use the following scaling
parameters: P0*, average pressure in the system, T0*, temperature at hot end of regenerator,
r0*, density at hot end of regenerator, q0*, gas velocity at hot end of regenerator, L0*,
length of regenerator and t*, period of oscillation.  These scaling parameters can be
combined into dimensionless parameters as follows:

   e = t * q0
*/L 0

* ; g = Cp/Cv , M = Mach number = q0
*/ g R T 0

* , where R is the gas
constant, Va = Valensi number = Kp r 0* /m t *; l = f / 2 p Va, where f is the void fraction.
These parameters are convenient when expressing the previous equations in dimensionless
form:

   Scaled mass conservation equation, eq. (1'):
∂r
∂t + e

f
∂
∂z r q = 0 (6)

Scaled ideal gas law: P = r T (7)
Scaled momentum conservation equation, eq. (5):

r
f

∂q
∂t = – e

g M 2
∂P
∂z – q

Va (8)
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   Scaled energy conservation equation, eq. (4):

r0
*C p

∂T
∂t +

e q
f

∂T
∂z r – R r 0

*∂P
∂t = t *k

L 0
*2

∂2T
∂z2 + t *

T0
*Q (9)

 The heat transferred between the gas and the matrix (per unit volume of gas) is:
Q = h A s

(Tm
* – T *) /Vgas where h is the heat transfer coefficient, A s is the area of the gas–

matrix interface and Vgas is the gas fraction of the total volume. The hydraulic radius is rh
= Vgas/As so Q = h (T m

* – T*) /rh = h T 0
*(Tm – T) /rh in dimensionless variables.

   Therefore, eq. (9) becomes:

r 0
*C p

∂T
∂t + e q

f
∂T
∂z r – R r 0

*∂P
∂t = t *k

L 0
*2

∂2T
∂z2 + t * h

rh
Tm – T (10)

A similar energy conservation equation can be written for the matrix:

rm
* C m (1 – f) ∂Tm

∂t = t *k m(1 – f)

L0
*2

∂2Tm
∂z 2 + t * f h

rh
T – Tm (11)

where r m and Cm are the density and heat capacity of the matrix, Tm is the scaled
temperature of the matrix and k m is the thermal conductivity of the matrix. The term
describing the heat flow from the gas (per gas volume) has been multiplied by f, the gas
fraction of the total volume, and the terms involving just the matrix are multiplied by
(1 – f), the matrix fraction of the total volume.

SOLUTION OF EQUATIONS

These equations will be solved in a perturbation treatment that is valid when the level
of oscillation of the gas is small.  The perturbation parameter is e which is proportional to
q0*, the amplitude of the velocity oscillation at the hot end of the regenerator.  Further, it is
assumed that all the important features of the system operation can be described with only
fundamental frequency terms and that higher harmonic terms can be neglected.  These
assumptions lead to the following expansions for the dimensionless variables in the above
equations:

   P = P0 + e Pa + Pd ei 2 p t + e2 P2a + P2d ei 2 p t

T = T0 + e Ta + Td ei 2 p t + e2 T2a + T2d ei 2 p t

Tm = T0 + e Tma + Tmd ei 2 p t + e2 Tm2a + Tm2d ei 2 p t (12)

r = r 0 + e r a + r d ei 2 p t + e2 r 2a + r 2d ei 2 p t

q = qa + qd ei 2 p t + e q2a + q2d ei 2 p t

Subscripts a refer to average values and subscripts d refer to the amplitude of oscillating or
dynamic variables.

When eqs. (12) are substituted into eqs. (6), (7), (8), (10) and (11) the lowest order
equations describing the oscillating-term coefficients are:

   1
f

∂ r 0 qd
∂z + 2 p i rd = 0 (13)

P d = rd T0 + r 0 Td (14)

2 p i
f r 0qd = – qd

Va – e 2

g M 2
∂Pd
∂z (15)
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r 0

*Cp
r0qd

f
∂T0
∂z – 2 p i R

C p
Pd – r 0Td = t* h

rh
Tmd – Td + t* k

L0
*2

∂2Td
∂z2 (16)

1 – f rm
* C m 2 p i Tmd = f t* h

rh
Td – Tmd + 1 – f t* k m

L 0
*2

∂2Tmd
∂z2 (17)

Equation (17) is easily solved if the last term, km∂2Tmd/∂z2, is neglected and if the
oscillating matrix temperature is assumed to be proportional to the gas temperature
oscillations, but with a phase shift.  Then eq. 16 becomes (neglecting  k ∂2Td/∂z2):

   r0qd
f

∂T0
∂z – 2 p i R

C p
Pd – r 0Td = –2 p i G

1 + i a
Td, (18)

where a =
2 p 1 – f r m

* C m rh
f t* h and G =

(1 – f) r m* Cm
f r 0

*C p
.

The variables r0, P0 and T0 are determined by lower order equations and by static
boundary conditions.  The results are P0 = 1, T0 = 1+DT z and r0 = 1/T0, where DT is the
temperature difference from the hot to the cold end of the regenerator.  Equations (14), (15)
and (18) can be used to express the three oscillating-term coefficients, qd, Td and rd in
terms of Pd and eq. (13) can use these expressions to arrive at the differential equation2 for
Pd:

   
0 =

∂2Pd
∂z 2 + 1 + a i G T0 + a 2 + 1

G T0 + 1 2 + a 2 T0
– l l T0 – i

l2 T0
2 + 1

∂T0
∂z

∂Pd
∂z

+
4 p 2 M2 l i T0 – 1 (g – 1) 1 + a i G T0 + a 2 + 1 – g G T0 + 1 2 + a 2 Pd

e 2 G T0 + 1 2 + a 2 T0
(19)

With specified boundary conditions, eq. (19) can be solved for Pd by numerical
methods and the result used to find qd, Td and rd.  The boundary conditions will be
provided by the requirements of matching pressures and mass flows at the two ends of the
regenerator--at the compressor (hot end) and at the pulse tube (cold end).

There is one problem, however.  When average enthalpy flow (time-averaged over one
cycle) in the regenerator is calculated from these oscillating parameters, one finds:

   
h = C p m T =

Cp
f r q T =

e C p
2 f r 0 Td qd

cc

using the relationships r0 q a = 0 and r a qa + r0 q 2a +
rd
2 q d

cc = 0 that come from the
requirement that there is no average mass flow over a cycle. denotes a time average over
one cycle and qcc refers to the complex conjugate of q; Td qd

cc/2 is the zero frequency term
arising from multiplying two fundamental–frequency expressions.

In general this is not constant with z in the regenerator.  This means that there must be
some conversion of enthalpy flux into heat that is conducted axially through the gas and/or
conducted into the matrix and conducted axially through the matrix.  For this to happen
there must be a non-linear static temperature profile in the gas and/or the matrix.  But T0 is
linear in  z and it can be shown2 that neither Ta nor Tma can provide the necessary
temperature profile correction.  Therefore, the correction to the linear T0 profile must come
from T2a.

   Using higher order versions of the conservation equations, and taking the gas axial
conduction term, k ∂2T2a/∂z2, to be negligible, one can show that

r 0
*Cp
2

∂ r0 qd
cc Td

∂z =
1 – f t* km

L 0*2
∂2Tm2a

∂z2 (21)
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   which can be integrated to find Tm2a and
r0

*C p
2 f

∂ r 0 qd
cc T d

∂z = t* h
rh

Tm2a – T2a (22)

which can be used to find T2a.
We now have the corrected static temperature profile and the lowest order oscillating

terms, Pd, Td, r d and qd.  In addition, we can calculate the average enthalpy flux and it
obeys the second order energy conservation equations.

BOUNDARY CONDITIONS AT COMPRESSOR

   In the compressor, using scaled parameters:

Pressure: Pc = 1 + e Pcd ei 2 p t (scaled by P0
*) (23a)

Mass in the compressor: m c = 1 + e m cd ei 2 p t (23b)
(scaled by m ca

* , the average mass in the compressor)
Distance above the piston: zc = zca + e zcd ei 2 p t (scaled by L 0

*) (23c)

Temperature: Tc = Tca + e Tcd ei 2 p t (scaled by T 0
*) (23d)

For an isothermal compressor, (essentially the same whether scaled or unscaled)
   1

Pc

∂Pc
∂t = – 1

z c

∂zc
∂t – 1

mc
∂m c
∂t (24)

But Pc = P at entrance to regenerator (z = 0) and ∂m c /∂t is mass flowing into regenerator at
z = 0. Therefore ∂m c

* /∂t = Aregen r* q* in unscaled parameters. Applying scaling yields:
∂m c /∂t = F e r 0 + e rd e2 p i t qd e2 p i t (25)

where F = Aregen L 0
* r 0

* /mca
* .

   Using eq. (25) and eq. (23c), keeping only the lowest order oscillating terms, eq. (24)
becomes

2 p i e Pd(z = 0) = – 2 p i e z cd
z ca

– F e r0 qd (here, r0 = 1) (26)

This equation provides one of the boundary conditions for the solution of eq. (19).

BOUNDARY CONDITIONS AT PULSE TUBE

   In the pulse tube, using scaled parameters:

Pressure: Pp = 1 + e Ppd ei 2 p t (scaled by P0
*) (27a)

Mass in the pulse tube from z to the warm end:
m p = mpa + m pd ei 2 p t (scaled by mca

* ) (27b)

Temperature: Tp = Tpa + e Tpd ei 2 p t (scaled by T0
*) (27c)

   Based on the treatment of Radebaugh3:

∂ mr
*

∂ t* =
A pt L – L regen

g R Tcold
*

∂ Pp
*

∂ t* +
T 0

*

T cold
*

∂ m o
*

∂ t* (28)
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  where ∂ m r
*/∂ t * is the mass flow from the regenerator into the pulse tube at its cold end, Pp

*

is the pressure in the pulse tube, ∂ mo
*/∂ t * is the mass flow through the orifice at the warm

end, A pt is the area of the pulse tube and L is the length of regenerator plus pulse tube. Eq.
(28) scales to

   ∂ m r
∂ t = G

∂ Pp
∂ t + 1

Tcold

∂ m o
∂ t where G = A pt L pt r0

* T0
*/g m ca

* T cold
* (29)

   But ∂ m r
∂ t is the mass flow from the regenerator at z = 1:

so
∂ m r
∂ t = F e r0(1) qd(1)e 2 p i t (30a)

and ∂ m o/∂ t is the mass flow at the orifice (proportional to pressure):
∂ mo
∂ t = k e Ppd e 2 p i t = k e P d(1)e 2 p i t (30b)

Therefore, F e r 0(1) qd(1) = e 2 p i G + 1
Tcold

k Pd(1) (31)

This equation provides the second boundary condition for the solution of eq. (19).

At the present time, the solution of eq. (19) is carried out with temperature-independent
values for thermal conductivity, viscosity and heat transfer coefficient.  The effect of a
temperature-dependent viscosity will be incorporated in the next improvement of the
calculation.  We are looking into ways to include the temperature dependence of the
thermal conductivity and the temperature and velocity dependence of the heat transfer
coefficient.

If all the dimensions and parameters of the system are inserted into the equations, the
results for cooling power can be calculated.  The enthalpy flow in the pulse tube is the
fundamental cooling of the system from which various heat leaks must be subtracted.
These are:  axial conduction in the wall of the pulse tube, axial conduction in the wall and
matrix of the regenerator, and enthalpy flux in the gas at the hot end of the regenerator.
(This last term redistributes itself to become an enthalpy flux in the gas at the cold end of
the regenerator plus an additional axial conduction through the wall and matrix as
discussed above;  the sum of these two contributions doesn't change, however, as it passes
through the regenerator.)  The orifice opening parameter is then varied to find a value that
maximizes the net cooling power.

RESULTS FROM MODEL

When typical numbers are used for the various parameters in the above equations, it is
noticed that the two terms in eq. (19) with denominators  (G T0 + 1)2 + a2 are very small,
approximately 2 orders of magnitude less than the other terms in the equation.  These terms
come from the expression for the oscillating temperature.  It would not distort the solution
appreciably to ignore these terms in the calculation of the pressure.  This is plausible since
it would not be expected that the thermal behavior of the system would have a large effect
on the mechanical behavior (pressure and velocity) of the system.  Once the pressure and
velocity were found from the simpler approach then the temperature oscillation could be
found from the eq. (18).  This is not the approach we take but it would certainly be
reasonable if circumstances made it advantageous.



7

150 Mesh 
S c r e e n

0 . 0

5 . 0

10 .0

15 .0

1 1 0 1 0 0

N
e
t 

C
o

o
li
n
g

C
o

m
p

re
s
s
o

r 
P

o
w

e
r

Length/Diameter 

(
%

)

Fig. 1.  Cooling power as a function of length-to-diameter ratio for 150-mesh screens.

It is interesting to ask how the performance of a pulse tube depends on the length-to-
diameter ratio of the regenerator.  For a constant volume of the regenerator, there should be
an optimum length-to-diameter ratio since the axial-conduction heat leak will become very
large at short lengths and the pressure drop will become very large at long lengths.  We
used our model to calculate some performance data for a typical orifice pulse tube
operating between 300 K and 100 K using helium gas with g=1.68.  The cooling power we
calculate is composed of the enthalpy flow in the pulse tube section reduced by the
enthalpy flow through the regenerator toward the cold end and reduced by axial heat
conduction through the walls of the pulse tube and regenerator.  Figure 1 shows the results
for a regenerator filled with 150-mesh screens.  The optimum length/diameter ratio is 12
for this case.

When the regenerator screens are made finer by going to 250 mesh, the cooling power
is higher at the optimum length/diameter ratio as shown in fig. 2.  Because of the more-
restrictive screens, the optimum length/diameter occurs at 3.6.
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Fig. 2.  Cooling power as a function of length-to-diameter ratio for 250-mesh screens.
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